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Abstract

In these last few years, a number of localization methods
have been proposed for vehicles equipped with propriocep-
tive and exteroceptive sensors. Unfortunately, a systematic
study of these methods has never been done. In order to
easily make such a study, Minicar (a small teleoperated
mobile vehicle) has been built. A Client/Server architecture
with a wireless communication enables to deport comput-
ing to a distant computer. Consequently, the development of
the localization algorithms is simplified and the embedded
electronics of the vehicle is low cost. Furthermore, a light
embedded hardware offers more autonomy to the vehicle.

1. Introduction

Development of a powerful localization system has sug-
gested number of works. Most of the published works [1]
use the same kinds of proprioceptive and exteroceptive sen-
sors. Localization is always done in a two phases process:
prediction and estimation. Prediction (which integrates the
odometric data) is quite similar whatever the method is.
However, the estimation could be done in very different
ways. Thus, we have seen the emerging of several technics
using probabilistic [5], interval analysis [7] and Markovian
[3] methods.
Depending on the chosen method, the localization can be
performed in complex, dynamic or badly mapped environ-
ments. Some methods are well adapted to light electronic
architectures [4] whereas others [3], [6] are more robust
but need a lot of computing power. So as to compare and
test some localization methods (which were never been
used in real environment), we decided to design a generic
experimental vehicle. This vehicle must be able:

• to be controlled by a distant operator
• to give an estimation of the localization on an envi-

ronment map
• to provide a visual return

Finally, so as to enable easy experimentation, our vehicle
architecture has to be light and must have a small size. As
some localization algorithms require a lot of computing
power (not easily implementable in a light embedded
electronics), we chose a client-server architecture with
a powerful distant workstation. The communication is
ensured by a wireless connection (Wifi) and an high level

protocol that we defined. All the actuators and sensors of
our small vehicle are accessible through the Wifi network.
The mobile is a data server which can accept requests
and commands from one or more distant workstations. The
choice of a rough electronics seems particularly judicious
because it makes possible to increase the autonomy of the
mobile.
Keeping in mind this constraint, we designed a single card
(low consumption) where various sensors and actuators
are connected. The starting point of this project was the
hardware architecture of the PICAR project [2] dedicated
to controlling a full size electric vehicle.
In the following section we present the vehicle architecture.
Next, a localization method based on Kalman filtering
is presented. Finally, some experimental results show the
soundness of our architecture.

2. Description of the Experimental Vehicle

2.1. Hardware description

We use a mechanical base of a vehicle model reduced
to 1/8 dimensions. Its dimensions are 1m length by 40cm
width (figure 1). The propulsion is ensured by an electric
motor (D.C. motor) assembled on a reducer and a differen-
tial bridge of the aft wheels. We instrumented this vehicle
(figure 7) while adding to it:

• an embedded computer
• a data transmission module (WIFI)
• sensors (odometer, magnetic course,ultrasonic sensor,

image sensor)
• actuators to order the propulsion and the direction of

the vehicle

The engine is ordered (through a power module) by a
PWM signal generated by the embedded computer. An-
other PWM signal makes it possible to control a steering
servo-motor. The ordering of steering is carried out a priori
in open loop but a pair of odometric sensors (gone up on
the two aft wheels) allows us to implement a correction
on the steering. Consequently, the odometric sensors also
allow us to establish a control of position or speed on the
vehicle.



Fig. 1. Minicar

Fig. 2. Embedded computer

2.2. Material architecture

Hardware architecture is based on a centralized com-
puter using a 16bits microcontroller (INTEL186 family)
(figure 2). The sensors are accessible through an I2C bus
and RS232 serial data transfers. The actuators are ordered
by PWM signals. A programmable circuit, interfaced to
the microcontroller, measures the covered distance from
the odometers by accumulating incremental coders pulses.
Such a choice discharges the computer and ensures a
resolution of movement of 1 point per µs, which is largely
enough. Figure 3 gives a synoptic presenting the various
modules embedded on the mobile. The following para-
graphs will detail the most relevant parts of the material
architecture.

2.2.1. The embedded computer

The embedded computer is based on an intel80186 mi-
crocontroller which have a 16 bits core clocked at 20Mhz.
It is an on-chip computer designed by BECK company (see
HTTP: \\www.bcl.de). It integrates 512Ko RAM, 512Ko
Flash ROM and several peripherals (TIMER, DMA, 2
RS232 UART, I2C bus, many I/O pins and an Ethernet
802.3 10BaseT link) in one single DIL32-housing. BECK
circuit comes with a preinstalled real time operating system
including TCP/IP stack, Web-server, FTP-server, Telnet-
server. It also embeds HAL API (Hardware Abstraction
Layer API). It is possible to carry out up to 64 tasks in

Fig. 3. Flowchart of the hardware

time sharing with preemption mechanisms.
We use a normalized PHYTEC format board to imple-

ment our embedded computer. We especially added CAN
Controller and CPLD logic programmable chip (Complex
Programmable Logic Device) for general purpose.

The I2C bus was prefered to the CAN bus because of
the sensors space dispersion on the experimental vehicle.
Indeed, the vehicle is 1 meter long and ultrasonic sensors
modules are fixed like in the figure 7. These car dimensions
do not justify the use of a more complex bus protocol like
CAN bus used on PICAR vehicle [2].

The operating system of the BECK computer is strongly
inspired by the DOS system (with Real Time specificity)
and is accessible by Ethernet network. This very useful
solution allows us to download the application program
and to easily carry out a debugging (DEBUG). It is also
possible to implement high level software applications like
telnet, ftp or WEB-server. We use standard development
tools such as Borland C++.

2.2.2. Proprioceptive and exteroceptive sensors

Motions of the mobile are measured by two incremental
coders assembled on the rear wheel unit. These sensors,
with a 200 points per turn angular resolution, give a
millimeter-length precision which is considered as enough
given the mechanical precision.

The mobile localization within its environment is assured
by ultrasonic sensors (SFR08 of Devantech) fixed around
the vehicle. These sensors are also used by the anti-
collision system in order to stop the vehicle in the presence
of too close obstacles. The ultrasonic sensors are connected
to the computer by using the I2C bus. It is possible to
launch a simultaneous measurement on all the sensors by
using general I2C call.

Currently, seven ultrasonic modules are connected and
our hardware is able to accept up to sixteen sensors.
The software part deals with the hot connection and
disconnection of the sensors. This brings robustness to the



system. Each ultrasonic module uses transmitter resonator
and receiver resonator both calibrated at 40KHz frequency.
Taking into account the principle of measurement based on
shooting windows, the sensor is blind below 3 cm and its
maximum sensing distance is 6m.

A light intensity sensor, not used at the present time,
is placed in the center of the ultrasonic module for future
uses coupled with image sensors.

We also embedded an electronic compass in order to
have a magnetic course with an accuracy of 2 degrees.
This sensor is connected to the I2C bus.

Lastly, a color image sensor (80 lines * 143 columns)
is connected to a parallel interface. This sensor embeds
a microcontroller allowing a video acquisition and a low
level image processing. The goal of this sensor is to check
the good course of the experiment (thus it is not taken into
account for automatic course tracking).

2.2.3. Vehicle control

A servo-motor interprets the orders given through PWM
signal (Pulse Width Modulation) to steer the vehicle. A
second PWM signal ensures the gear control. We connected
on the I2C bus a module which generate PWM signals
according to the instructions of the embedded decision
system. However, the initiative of a movement is not real-
ized by the embedded computer but by another delocalized
system which sends its orders through WIFI connection
according to a specific protocol.

2.3. Communication protocole

The client/server communication was designed in or-
der to make it possible that the mobile accepts several
connections. By doing this, several workstations will be
able to collect the sensors data. The mobile being a
server, its IP (Internet Protocol) address is known by
potential clients. This choice makes it possible to carry
out the teleoperation of the mobile from any computer. In
a traditional operation, the client sends a request to the
mobile which answers him. These requests can be specific
requests for sensor data or orders. The client can also ask
for receiving periodic sensors data. At the beginning of the
communication sequence, the client request the properties
of the experimental vehicle. The response, made up of
dimensions of the mobile, the number of sensors and their
location, makes it possible to automatically adapt the client
software to the evolutionary characteristics of the mobile.
Consequently, the client program is independent of the
characteristics of the experimental vehicle.

3. Localization

Once the experimental vehicle was achieved, we decided
to implement a first algorithm of localization using teleme-
ters and odometers. We chose a widely used algorithm :
the Kalman filter.

Fig. 4. Representation of a wall

Fig. 5. Telemeter’s uncertainty

3.1. Environment model

We use an ideal 2D world map of the environment. Walls
and obstacles are represented as polygonal lines and each
line segment is parametrized either by (M, l ≥ 0, ρ ≥
0, ϕ ∈ [−π, π[) or by (P1, P2) as shown in figure 4.

3.2. Vehicle model

The vehicle configuration is denoted x = (xc, yc, θ)T

where (xc, yc) = Pc are the coordinates of a characteristic
point Pc which is located midway between the two rear
wheels and θ is the vehicule’s orientation. All variables are
defined with respect to the global frame. The control inputs
are composed by both longitudinal and rotational speeds
or equivalently by the incremental longitudinal (rotational)
motion ∆s (∆θ) during one time period (∆t). The robot
model is an approximation of the continuous case when the
integration is done using finite differences. The evolution
of the robot state is thus written as follows :

x̂ (t + ∆t) = f (x (t) , ∆s, ∆θ) (1)

=


 x(t) + ∆s · cos(θ(t) + ∆θ/2)

y(t) + ∆s · sin(θ(t) + ∆θ/2)
θ(t) + ∆θ




We compute ∆s and ∆θ from the rotational movement
of the two rear wheels :

∆s = ∆ard+∆arg
2

∆θ = ∆ard−∆arg
2e

Where ∆arg represents the left and ∆ard the right
wheel displacement; 2e is the distance between the two
wheels.



3.3. Telemetric sensor model

Our experimental vehicle is equipped with a belt of seven
telemetric sensors. The output of each sensor is time t,
which represents the time elapsed between the emission
and the reception of a sound signal. Knowing the sound
speed and the location T ′ of the sensor on the robot, one
deduces the distance d (d cannot be beyond the scope of the
sensor) to the detected obstacle and next the rough position
P ′ = (P ′

x, P ′
y) of the obstacle detected point. In fact, we

are not sure of the obstacle location, we only know that
it lies in a cone whose aperture is γ (in our case γ= 25◦)
and at distance d − δd ≤ d′ ≤ d + δd (figure 5).

Thus, the position of the impact point P ′, described by
a cone sector, can be included by an uncertainty ellipsoid
[11] of large axis σγ = 2d. sin γ

2 and of small axis σd =δd

xT
P ′

[
σ2

d 0
0 σ2

γ

]−1

xP ′ = 1 (2)

We simplify the data interpretation process by approxi-
mating [5] the covariance by a circular variance σ which
includes the whole arc shaped region (figure 5) which is
larger than any error:

σ =
√

2d (d + δd) (1 − cos γ) + (δd)2 (3)

3.4. The Extended Kalman Filter

3.4.1. Configuration uncertainties

x̂k represents the x configuration estimation at time k
and Pk is its associated covariance matrix:

Pk = E
(
(xk − x̂k) (xk − x̂k)T

)
(4)

Given a Pk covariance matrix, we represent the uncer-
tainty with an ellipsoid whose center is x̂k:

(xk − x̂k)T P−1
k (xk − x̂k) ≤ χ2 (5)

Where χ2 = −2 log (1 − Pr) [11] enlarges the ellipsoid
in order to be sure with a probability Pr that every point
is located inside the ellipsoid. The ellipse which represents
the distribution of errors is a two dimensional section of
the ellipsoid (x̂k is reduced to its x and y components).
Then the orientation uncertainty is given by:

Θk =
{

θk ∈ ]−π, π] mod(2π),
∣∣∣θk − θ̂k

∣∣∣ ≤ √
(P3,3)k · χ2

}
(6)

3.4.2. Prediction using proprioceptive sensor

The prediction equation which uses proprioceptive (odo-
metric) measurement is given by the robot model (eq. 1).
We need to compute the new uncertainty matrix Pk with
the help of Pk−1 and Qk−1. Assuming that x̂k−1, ∆s and
∆θ are not correlated, and due to the non-linearity of f ,
Pk can be calculated by a first order Taylor expansion:

Pk/k−1 = Fk−1Pk−1/k−1FT
k−1 + Qk−1 (7)

Fig. 6. Minicar environment

with:

Fk−1 =
(

∂f

∂x

)
x=x̂k−1

(8)

=




1 0 −∆s · sin
(
θ̂k−1 + ∆θ/2

)
0 1 +∆s · cos

(
θ̂k−1 + ∆θ/2

)
0 0 1




3.4.3. Estimation using exteroceptive sensor

Each exteroceptive measurement is associated to a seg-
ment by a classical matching process. Firstly, the obsta-
cles are enlarged with both measurement uncertainty and
robot position uncertainty. Secondly, the measurement is
matched with the segment if it is included in the enlarged
segment. Such a process is not detailed in this paper
(for an explanation see [5][10]). We use each ultrasonic
sensor independently and we iterate the Kalman process
[4] once for each sensor used so that the Kk computation
is simplified to a scalar inversion. The updated estimation
of xk and its associated covariance matrix is given by:

x̂k/k = x̂k/k−1 + Kk (yk − ŷk−1)
Pk/k−1 = (I − KkHk)Pk/k−1

(9)

where the Kalman gain, Kk provides the confidence that
we give to the measurement:

Kk = Pk/k−1Hk

(
HkPk/k−1HT

k + Sk

)−1
(10)

with the observation matrix:

Hk =
d

(
hk

(
x̂k/k−1

))
d(xk)

(11)

the non linear equation measurement yk = hk (xk) + wk

and the covariance matrix of the noise Sk.

4. Experimental Results

We now are going to present our first experiments,
aiming at jointly testing the experimental vehicle and the
localization algorithm described in the preceding sections.

4.1. User interface

The graphical user interface (figure 8) was developed in
the C language using OpenGL.

The main window shows (figure 6):



Fig. 7. Ultrasound sensors positions

Fig. 8. User environment

- the robot, symbolized by a rectangle with a point drawn
at the middle between the two rear wheels.

- the sensors impacts.
In a first stage, we checked the correct operation of the
ultrasound sensors in the charted environment represented
in the figure 6.

4.2. Using of the EKF predictive part

In a second stage, we proceeded to ultrasound mea-
surements while the vehicle moved within the corridor at
a speed of 10cm/s. Localization was realized according
to odometers: ultrasound sensors measurements was only
taken for evaluation purpose. The ultrasonic sensors were
positioned in accordance with figure 7. The mobile was
initially placed on the right of the corridor, as it is showed
in the figure 9. The curve represents the trajectory of the
mobile calculated thanks to the odometric data treated by
the predicted part of the EKF. The uncertainty ellipses
along the trajectory represent the ignorance of the real
position of the mobile.
We can notice that this curve, deferred in the global
reference, deviates and crosses a wall. Such a localization
error is due to the wheels slipping on the ground and to
the imprecision made on the measurements of the distance
between the two rear wheels and the wheels diameters.
Thus, on a fifteen meters course, the estimated ending

point is located at a little more than one meter far from
the real mesured ending point of the experimental vehicle
course (figure 12).
Measurements of the ultrasonic sensors, which were not
used in this phase, were however taken each second. They
are represented on figure 10 and positioned according
to the predicted position. We can thus discover a form
that coarsely corresponds to the corridor and follows the

Fig. 9. Mobile position estimated by the prediction part of the EKF

Fig. 10. Telemetric measurements obtained during the displacement

moving vehicle. Unfortunately, we can note that a great part
of these points corresponds to erroneous data and does not
represent any charted element.
Among these erroneous points, the presence of two lines
of parallel sensor impacts, (zone 1 of figure 10) can be
explained by the sensor aperture angle (see §3.3). Indeed,
the supposed impact points are placed in the sensors’ axe
whereas the real position of the impact is in the uncertainty
zone. The presence of aberrant points is not only due to
the uncertainty of the results returned by the sensors but
also to the presence of foreign elements not represented in
the chart. Thus, the developed matching function should
only consider a relevant part of telemetric measurements,
and eliminate the others considered as wrong.

4.3. Joint use of prediction and estimation

By integrating exteroceptive measurements within the
previous process of localization (§ 4.2), we hope to correct
a part of the errors on the mobile position. Contrary to
the last figure, the trajectory of figure 11 does not meet
any wall, which makes it realistic.
The points that were used for localization are represented
by a darker color with a larger diameter than those
considered as erroneous. We can notice that a great part
of the points have not been used for the localization of the
mobile: they were considered as aberrant. These points
represent 30 to 40% of the obtained measurements.
The rectangle in the top of figure 12 (predicted position)
makes it possible to precisely visualize the final position
of the mobile and its uncertainty ellipse when we only use
the odometers. The rectangle in dotted lines corresponds
to the real position of the mobile measured manually at
the end of the handling. The last rectangle corresponds
to the estimated mobile position when we use both
odometric and telemetric measurements. We can notice



Fig. 11. Integration of sensors measurements in the process of localisa-
tion

Fig. 12. Final configurations comparison

that the two uncertainty ellipses are realistic because they
both integrate the real mobile final position.

Table II gives us the differences between the predicted
position and the real one and between estimated and real
position. These variations are calculated starting from
the points of table I. When we use the exteroceptive
measurements, we can notice a great improvement on the
precision of the final position compared to the single use
of the odometers.
Let us note that the most significant improvement was
carried out according to the Y axis. This is due to the
number of samples that have been put in correspondence
with the horizontal segments of the chart. The uncertainty
ellipse on the final position is very flattened and
corroborates these results. The significant correction on
the angle may be explained by the same reasons. On the
other hand, along the X axis, the improvement is less
perceptible. This is due to the fact that the number of
samples having been used to readjust the mobile along
this axis remains weak because of the corridor geometry
and the trajectory that the mobile followed.

5. Conclusion and prospects

In this paper, a description was made of the localization
experimental vehicle. As the tests showed it, the mobile
is operational and a first localization method had been
implemented. In a few time, three additional methods
(error-bounded method [8], probability grid and particulate
filtering) will be tested and compared in real environment.
Futhermore, low level actions reflexes are going to be
implemented within the embarqued electronic and will

Position Real Predicted Estimated

X(m) 19.46 19.65 19.52
Y(m) 1.18 2.15 1.16
θ(m) 180 169.6 180.4

TABLE I

FINAL VEHICLE CONFIGURATION COORDONATES

Position Predicted Estimated

∆X (cm) 19 -6
∆Y (cm) 97 -2
∆θ (cm) 11.4 0.4

TABLE II

POSITION VARIATION

allow the mobile to avoid collision by following another
path.

References

[1] Borenstein J., Everett B., Feng L., ”Navigating Mobile Robots:
Systems and Techniques”, A. K. Peters, Ltd., Wellesley, MA, (1996).

[2] Bouaziz S., Fan M., Lambert A., Maurin T., Reynaud R., ”PICAR:
experimental Platform for road tracking Applications”, IEEE Intel-
ligence Vehicles Symposium, (2003).

[3] Burgard W., Fox D.,Thrun S., ”Estimating the Absolute Position
of a Mobile Robot Using Position Probability Grids”, In Proc. of
the 21st German Conference on Artificial Intelligence, Germany,
(1997).

[4] Chui C.K., Chen G.: ”Kalman filtering with real-time applications”.
Springer Verlag, (1990).

[5] Crowley. J. L., ”World modeling and position estimation for a mo-
bile robot using ultrasonic ranging”, IEEE International Conference
on Robotics and Automation, pp. 674-680, Scottsdale, (1989).

[6] Dellaert F., Fox D., Burgard W.,Thrun S., ”Monte Carlo localisation
for mobile robots”, in Proc. IEEE Internationnal Conference on
Robotics and Automation (ICRA-99), Detroit, MI (1999).

[7] Kieffer M., Jaulin L., Walter E., Meizel D., ”Robust Autonomous
robot localization using Interval Analysis”, Reliable Computing, 6,
337-362, (2000).

[8] Kieffer M., Seignez E., Lambert A., Maurin T., Walter E., “Vehicle
Tracking Based on Robust Bounded-Error Nonlinear State Estima-
tion using Interval Analysis”, International Conference on Informa-
tion & Communication Technologies: from Theory to Application,
2004.

[9] Lambert A., Le Fort-Piat N., ”Safe Task Planning Integrating
Uncertainties and Local Maps Federations”, International Journal
of Robotics Research, 19(6), (2000).

[10] Leonard J.J; Durant-Whyte H.F., ”Mobile robot localization by
tracking geometric beacons”, IEEE Trans. On Robotics and Au-
tomation, pp. 376-382, 7(3), (1991).

[11] R.C. Smith and P. Cheeseman. On the representation and estimation
of spatial uncertainty, International Journal of Robotics Research,
pp.56-68, 5(4), winter, 1986.


